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Flow past a trapezoidal tab
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(Received 12 July 2002 and in revised form 4 March 2004)

The flow passing over a trapezoidal tab mounted on a flat plate is studied using direct
numerical simulation (DNS). Such a tab has been used to generate hairpin-like vortices
to enhance cross-stream mixing. We attempt to provide a detailed account of the three-
dimensional topology and dynamics of the hairpin vortices in the tab wake. Simula-
tions are conducted for three tab inclination angles at Reynolds number Re= 600
based on the free-stream velocity and the tab height. A finite-volume discretization
scheme involving 2.6 × 106 control volumes is employed for the simulations and
the results are compared with PIV experimental data. Simulations captured all the
experimentally observed near-field flow features including a pair of streamwise co-
rotating vortices and its transition to hairpin vortices. Simulation results provide new
insight into the vortex dynamics in the tab wake. It is shown that the hairpin vortex is
capable of lifting up and entraining vorticity from the local boundary layer, thereby
increasing its strength to counter the vorticity diffusion. It is also observed that the
turbulence production is mostly accomplished by the hairpin heads/arches, while the
highest kinetic energy is associated with hairpin vortex legs. The topological charac-
teristics of the structures and the statistical characteristics of the flow are discussed
in detail.

1. Introduction
The use of vortex-generating tabs is a common method for mixing enhancement

(Reeder & Samimy 1996; Foss & Zaman 1999). The most frequently used tabs are of
rectangular and triangular shapes, and have been applied in jets (Bradbury & Khadem
1975; Tanna 1977; Samimy, Zaman & Reeder 1993; Zaman, Reeder & Samimy 1994;
Zhang & Schneider 1995; Zaman & Foss 1997) and plane mixing layers (Island,
Urban & Mungal 1998; Foss & Zaman 1999). A new class of mixing tabs – the
trapezoidal tab – has emerged in recent years. The application of trapezoidal tabs
is exemplified by the high-efficiency vortab mixer (Fasano 1991; Etchells, Wadley &
Fasano 1999), which consists of an array of such tabs mounted on the inner wall of
a pipe or a duct.

Although a trapezoidal tab can be considered as an intermediate geometry between
the triangular and the rectangular tab, it bears unique characteristics that facilitate
more efficient mixing. In addition to the streamwise vortices found in the wake of
a triangular tab (Zaman et al. 1994; Reeder & Samimy 1996), the surface-mounted
trapezoidal tab also produces a sequence of periodic hairpin-like structures owing to
its flat top edge (Gretta & Smith 1993). The hairpin vortices add to the complexity
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of the vortex dynamics in the tab wake and offer more efficient mixing mechanisms.
Their counter-rotating legs and their arches (or heads) synergistically induce a strong
second-quadrant pumping of low-speed fluids from the surface, while their arches
also entrain high-speed free-stream fluid into the near-wall region. Once formed, a
hairpin vortex moves away from the wall by self-induction (Robinson 1991), making
the mixing region grow rapidly. In the presence of nested hairpin vortices, the legs
of the preceding hairpin intertwine with the trailing hairpin vortex (Acarlar & Smith
1987a). Such interactions cause more energetic mixing in the wake. The pairing and
coalescence between hairpin vortices significantly increase the penetration of structures
to the outer flow (Gretta & Smith 1993). Furthermore, hairpin structures provide a
self-sustaining mechanism by regeneration of secondary hairpin structures through
unsteady three-dimensional separation of the surface layer (Smith et al. 1991). It is
also observed that hairpin structures are long-lived in the tab wake (Yang, Meng &
Sheng 2001), persisting until at least 20 tab heights downstream. When the flat
top edge of the trapezoidal tab vanishes, the resulting triangular tab produces only
a counter-rotating vortex pair and significantly lower cross-stream penetration in a
wall-bounded flow (Gretta 1990). Hence, the trapezoidal tab is a more efficient mixing
device owing to the unique hairpin vortex dynamics.

The genesis of the surface-mounted trapezoidal tab as a mixing device originated
from the study of turbulent boundary layers, wherein hairpin structures and stream-
wise vortices are believed to perform efficient transport of surface fluid to the outer
layer and induce the movement of the outer flow toward the wall (Robinson 1991).
Based on observations of both natural turbulent boundary layers and hairpin vortices
generated artificially via protrusion or fluid injection on the surface (Acarlar & Smith
1987a, b; Peridier, Smith & Walker 1991a, b; Smith et al. 1991; Haidari & Smith
1994; Smith & Walker 1995), the trapezoidal tab was devised out of the intent to
initiate a turbulent-like flow pattern of hairpin and streamwise vortices at scales in
excess of the turbulent boundary layer (Gretta & Smith 1993). The trapezoidal tab
is able to create turbulent-like mixing in an otherwise laminar regime and to elevate
the turbulence transport levels above those of a natural boundary layer.

Gretta (1990) systematically studied how the geometrical parameters of the trape-
zoidal tab affect its performance. By using the ‘maximum disturbance height’, norma-
lized by the tab height, as a measure of the tab mixing efficiency, he observes that
increasing the tab length or the overall tab size does not affect the performance
significantly, but increasing tab width and decreasing inclination angle results in an
increased normalized disturbance height.

Several primary and secondary vortex structures in the wake of the trapezoidal tab
were identified in previous experimental work (Gretta & Smith 1993; Elavarasan &
Meng 2000; Yang et al. 2001). Along with a sequence of hairpin-like structures
periodically shed from the tab tip, there is also a pair of counter-rotating streamwise
vortices (CVP) in the tab wake. While the conceptual picture of Gretta & Smith (1993)
suggests that the two types of vortex coexist in the entire tab wake, Elavarasan &
Meng (2000) observed that the CVP and the hairpin vortices dominated different
streamwise regions of the wake. The CVP was observed to exist only in the very near
tab region. Downstream, it was taken over by hairpin vortices. There was a transitional
region in between, where the CVP and the hairpin vortex coexist. Yang et al. (2001)
reported detailed PIV measurements of the wake of a trapezoidal tab mounted in a
turbulent channel. They documented the dynamics of the hairpin vortices observed
in two-dimensional slices, several types of hairpin-vortex interactions, the rising of
the hairpin heads with downstream distance, the imprints of hairpin vortices on the
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mean flow, Reynolds stresses and the turbulence dissipation rate. They observed that
hairpin vortices increased strength (circulation) for some distance, and attributed this
phenomenon to the pumping of the boundary-layer vorticity by the hairpin vortices.
Secondary hairpin vortices were observed in their PIV measurements, along with new
kinds of vortices, referred to as reverse vortices, with a sense of rotation opposite
to those of the hairpin structures. The secondary hairpin vortices were observed to
interact frequently with the primary hairpin vortices (Yang et al. 2001). Gretta & Smith
(1993) also observed the pairing and coalescence of the primary hairpin vortices and
showed that such interactions facilitated the growth of the wake and increased the
cross-stream penetration of the structures.

Gretta & Smith (1993), Meng & Yang (1998) and Yang et al. (2001) measured the
statistics of the trapezoidal tab wake at isolated points or in several discrete planes.
It was observed that low mean streamwise velocity and high turbulent intensity
coincided with the regions of streamwise vortices. The mean velocity profile exhibited
two inflection points, which corresponded to the passage of the hairpin vortex heads
and reverse vortices (Yang et al. 2001). Because of the technical limitations of the hot-
wire anemometry and PIV measurement techniques, the complete turbulence statistics
was not given.

The following issues are yet to be addressed pertaining to the dynamics and statis-
tics of the trapezoidal tab wake. How is the counter-rotating vortex pair formed?
How are the hairpin vortices generated? How does the CVP transit to the hairpin
structures? What is the topological relationship between the two vortex structures
in the transitional region? What are the three-dimensional topologies of the hairpin
vortices, the secondary hairpin vortices and the reverse vortices observed by Yang et al.
(2001)? Why are hairpin vortices a long-lived structure in the tab wake despite
vorticity diffusion? How is the turbulence production related to the flow dynamics in
the wake? Owing to the highly three-dimensional and dynamic nature of the tab flow,
these issues were not addressed in previous measurements and visualizations. They
subsequently become the motivation of this DNS study.

This work focuses on the near field of the trapezoidal tab wake (within about
5 tab heights). The objectives are to provide a comprehensive physical picture of
the trapezoidal tab flow and to elucidate several unresolved questions about the
tab wake. Emphasis is placed on the discussion of the vortex dynamics and the
statistical characteristics. The understanding gained from this study will be useful for
the assessment of the efficiency of the tab mixer and the improvement of its design.
Moreover, this work could shed light on the dynamics of the hairpin structures and
their roles in turbulent transport in wall-bounded flows.

2. Simulation configuration and methodology
2.1. Flow configuration

Figure 1 shows a diagram of the flow. The computational domain has a streamwise
length L, a vertical height Q and a spanwise dimension S. All of these parameters are
normalized by the tab height h. The trapezoidal tab is mounted on the flat plate with
an inclination angle α. The upper edge of the tab is positioned at xt in the streamwise
direction. The geometry parameters of the tab (table 1) including the bottom and top
edge widths (a, b), the two tapering angles (β1, β2) and the inclination angle are set
in accordance with those in PIV experiments (Meng & Yang 1998). We assume that
the thickness of the tab is zero throughout the simulations. The direction of the in-
coming flow is perpendicular to the base of the tab. A structured boundary-fitted grid
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Figure 1. Sketch of flow configuration. Dashed box marks the flow domain.

a (cm) b (cm) β1 (deg.) β2 (deg.) Re δ/h

PIV/simulation 2.9 2.1 7.6 7.6 600 0.7

Table 1. Geometry parameters in both simulation and PIV experiment. See figure 1 for the
meanings of symbols.

has been used in current simulations. To resolve the physical characteristics, the grid
is clustered around the tab. The flow variables are arranged in a staggered fashion,
in which we define the velocities on cell surfaces and the pressure at the cell centre.

2.2. Computational methodology

We consider the incompressible Navier–Stokes equations along with the continuity
equation:

∂ui

∂t
+

∂

∂xj

uiuj = − ∂p

∂xi

+
1

Re

∂

∂xj

∂

∂xj

ui, (1)

∂ui

∂xi

= 0, (2)

where ui are the velocity components normalized by the free streamwise velocity
U0 and will be used interchangeably with the streamwise, wall-normal and spanwise
velocities, (u, v, w); p is the pressure divided by the density and normalized by U 2

0 .
The spatial coordinates, xi , have been normalized by the tab height h, and will be
used interchangeably with (x, y, z). Thus, the appropriate Reynolds number for this
flow is defined as Re =U0h/ν, where the kinematic viscosity of the fluid, ν, is assumed
to be constant.

The discretization is based on a finite-volume scheme in conjunction with the
fractional step temporal differencing of Kim & Moin (1985):∫

ûi dv −
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i dv −
∫

ûi dv

�t
= −

∮
φm+1ni ds, (4)∮

um+1
i ni ds = 0, (5)

where ûi are the intermediate velocity components; um
i are the velocity components at

time step m. n denotes the outward unit vector of the cell face. The nonlinear term is
expressed by Ni = −

∮
ui V · n ds, where V is the velocity vector. The pseudo-pressure,

φ, is related to the pressure p by

p = φ +
�t

2Re
∇2φ. (6)

The volume and surface integrals in (3) and (4) are evaluated on the grid cell
corresponding to ui , while the surface integral in (5) is evaluated on the grid cell for
the pseudo-pressure.

We rearrange the three-dimensional flow variables into vectors. Let Ui and Φ denote
the vector forms of the velocities and the pseudo-pressure, respectively. Equations (3)–
(5) are then expressed via:

AiÛi = Ri (i = 1, 2, 3) (7)(
3∑

i=1

DiC
−1
i Bi

)
Φm+1 =

1

�t

3∑
i=1

DiÛi, (8)

Um+1
i = Ûi − �tC−1

i BiΦ
m+1 (i = 1, 2, 3), (9)

where Ai are the coefficient matrices for the three velocity components; Ci are diagonal
matrices of the cell volumes; Bi are defined by BiΦ =

∮
φni ds and Di are defined by

3∑
i=1

DiUi =

∮
V · n ds.

The right-hand-side vectors, Ri , are expressed as
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∫
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2
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)
+

�t

2Re

∮
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A laminar boundary layer profile with a thickness δ =0.7h is prescribed at the
inlet. No-slip boundary conditions are imposed on all solid boundaries. A convective
boundary condition is applied at the outlet:

∂ui

∂t
+ Uc

∂ui

∂x
= 0, (11)

where Uc is chosen such that the total mass is conserved. Periodic conditions are
applied in the spanwise direction. On the upper boundary a no-stress wall condition
is used:

v = 0,
∂u

∂y
=

∂w

∂y
= 0. (12)

2.3. Parameters

Three cases are simulated with different inclination angles α = 12.25◦, 24.5◦ and 49◦,
at a fixed Reynolds number Re = 600. Table 2 lists the parameters for the three cases.
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α (deg.) h (cm) Computational domain

Case A 12.25 0.64 11.8h × 3h × 10.2h
Case B 24.5 1.24 10h × 4h × 6h
Case C 49 2.26 8.7h × 4h × 4h

Table 2. Simulated cases.
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Figure 2. (a) Mean streamwise velocity U and (b) Reynolds stress 〈u′v′〉 profiles at x = 8h
in the centreplane on different grids (α = 24.5◦). �, 161 × 65 × 81; �, 225 × 97 × 121; ——,
225 × 129 × 121.

Based on the inlet friction velocity u∗ =
√

τw/ρ (where τw is inlet wall shear stress and
ρ is the fluid density) and the viscous length scale y∗ = ν/u∗, the first mesh point above
the flat plate is approximately at y+ = �yw/y∗ ≈ 0.23, and the maximum grid spacing
occurs at the upper boundary (free surface) of the domain with �y+

max = �ymax
y∗ ≈ 4.

Grid tests were conducted to ensure the sufficiency of the grid resolution. Figure 2
shows the profiles of the mean streamwise velocity U and the Reynolds stress
〈u′v′〉, where u′ and v′ are the fluctuating streamwise and wall-normal velocities,
in the centreplane obtained on three sets of grids: 161 × 65 × 81, 225 × 97 × 121 and
225 × 129 × 121. With the 225 × 97 × 121 grid, both the mean streamwise velocity
and the Reynolds stress are captured correctly with confidence. Therefore, the grid
225 × 97 × 121 is used in all the simulations. The simulation results within the initial
1.5 ‘flow-through’ time (≈1.5L/U0, L denoting the length of domain) were discarded to
allow for the passage of initial transients. The statistical data set was then accumulated
until the flow statistics converged, which amounts to about three ‘flow-through’ times.

2.4. Comparison with PIV experiment

We compare the simulation results with PIV measurements (Meng & Yang 1998)
of the tab flow conducted under the same conditions as Case B (α = 24.5◦). The
geometric parameters in the PIV experiments are summarized in table 1.

In figure 3 we plot the mean streamwise velocity U (y) and the Reynolds stress
〈u′v′〉 profiles at the streamwise location 4.5h behind the top edge of the tab in the
centreplane. Both simulation and PIV measurement demonstrate a velocity deficit and
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Figure 3. Profiles in the centreplane 4.5h behind the tab from —, simulation and
�, experiment (α = 24.5◦): (a) mean streamwise velocity U (y); (b) Reynolds stress 〈u′v′〉.

two inflection points in the mean velocity profile. Moreover, both simulation and PIV
data captured the three distinct layers of Reynolds stress 〈u′v′〉 with alternating signs
along the wall-normal direction. In the middle layer, the simulation over-predicted
the Reynolds stress values.

In figure 4, we compare the simulated and measured mean wall-normal velocity V

and the Reynolds stress 〈v′w′〉 profiles. Both the simulation and the experiment
produce a zone of positive mean vertical velocity (upward flow) in the middle and
zones of negative values (downward flow) on both sides. The upward motion in the
middle and the downward motion on the sides are induced by the streamwise rotation
of the CVP and hairpin legs. Figure 4(a) further shows a velocity deficit in the profile
near the symmetry plane, which is related to the downward induction by the secondary
streamwise CVP (see § 3.6). The simulation has captured these characteristics of the
mean wall-normal velocity quite well. The profiles of the Reynolds stress 〈v′w′〉 in
figure 4(b) show that the simulation and the PIV measurement have produced the
same distributions of the Reynolds stress 〈v′w′〉. However, on the boundaries of the
wake region, the simulation has produced 〈v′w′〉 values lower than those obtained ex-
perimentally, and the width of the wake region (where 〈v′w′〉 demonstrates significant
variations) from the simulation is also smaller than that from the experiment. We
believe that these discrepancies came from two sources. First, a zero-thickness tab
is assumed in the simulations, while the tab thickness may have a notable influence
on the statistics. In the experiment, the finite tab thickness and the sharp corners can
induce additional instabilities and fluctuations near the tab edges, which propagate
downstream along the boundary of the wake. This will result in larger 〈v′w′〉 values
and a wider wake. Secondly, the fluctuation at the inlet in the experiment may also
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Figure 4. Profiles along a horizontal line 4h behind the tab and 0.5h above the wall from —,
simulation and �, experiment (α = 24.5◦): (a) mean wall-normal velocity V (z); (b) Reynolds
stress 〈v′w′〉.

have an effect on the obtained statistics of the tab wake. In contrast, no fluctuations
are added to the inlet velocity in current simulations. In summary, the overall
agreement between the simulation results and the PIV measurements is good.

3. Flow structures
In present simulations, we have confirmed a number of vortex structures and their

interaction patterns that were observed in previous experimental studies. In addition,
the simulations have revealed several new structures and phenomena in the tab flow
such as the upstream necklace vortices, the secondary streamwise counter-rotating
vortex pair, and the splitting of the CVP into hairpin vortex legs.

The tab wake comprises a variety of flow structures. In figure 5, we plot the
iso-surface of the median eigenvalue, λ2, of the tensor S · S+ Ω · Ω , where S and Ω

denote the symmetric and the anti-symmetric parts of the velocity gradient tensor,
respectively. Jeong & Hussain (1995) define the core of a vortex as a region with two
negative eigenvalues, hence requiring λ2 < 0. The λ2 iso-surface seems to have captured
overwhelming details, a scenario echoed by Evangelinos & Karniadakis (1999). To
illustrate the flow characteristics more clearly, we show the iso-surfaces of the vorticity
magnitude |ω| and the pressure in figures 6(a) and 6(b), respectively. We plot a set
of vortex lines together with the vorticity iso-surface. A portion of the hairpin vortex
arch is removed to reveal the vortex lines within. Although these distributions are less
rigorous than the λ2 iso-surface as a vortex definition, they provide a simple overview
of the main structures in the tab flow.

3.1. Upstream necklace vortex

Current simulations reveal the existence of a quasi-stable recirculating necklace
vortex (or horseshoe vortex) upstream of the tab, which has not been observed in
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Figure 5. Iso-surface λ2 = −0.1, where λ2 denotes the median eigenvalue in Jeong & Hussain
(1995). A section behind the tab is removed to show the inner complexities of the structures,
with contour lines of λ2 shown on the cross-sections (α =49◦).

previous experiments. Figure 7(a) demonstrates this vortex with a set of instantaneous
streamlines passing through a horizontal rake at the inlet about 0.3h above the flat
plate (α = 49◦). This upstream necklace vortex is also observed for the case α =24.5◦,
but not for α =12.25◦. The dimensions of the necklace vortex are observed to increase
as the inclination angle increases. At α = 49◦ two secondary necklace vortices are
observed in front of the original one rotating in contiguous directions (figure 7b),
similar to those observed in juncture flows (Baker 1979). The necklace vortices
encircled the tab. Their legs extend downstream, and gradually lose coherence and
disperse into the wake in the far field.

As in many other juncture flows, the necklace vortex forms because the in-coming
flow experiences a strong adverse streamwise pressure gradient. This, coupled with
the cross-stream pressure gradient generated by the curvature of the flow around the
tab, led to a concentration of vorticity (Doligalski, Smith & Walker 1994).

3.2. Counter-rotating vortex pair

In the near-tab wake, the flow detours the two side edges and migrates towards the
centreplane owing to the pressure difference across the tab. This produces a pair of
large streamwise vortices rotating in opposite directions. The contours of the stream-
wise vorticity ωx in a cross-stream plane behind the tab (figure 8a) clearly show this
counter-rotating vortex pair (CVP). The CVP has a dimension comparable to the tab
height. The spanwise positions of the vortex cores are approximately at the two side
edges of the tab.

The two branches of the CVP originate from the two bottom corners of the tab,
with a small lateral dimension initially. By entraining the high-speed fluid into the
tab wake, this vortex pair grows rapidly to its full dimension (comparable to h).
A projection of the instantaneous traces of the CVP cores onto the (x, y)-plane
(figure 8b) reveals that the two branches of the CVP almost coincide with each
other in height initially, indicating that the CVP is symmetric at the initial stage of
development. Above the height y ≈ 0.3h (point A in the figure), the two branches
begin to rise at different rates until they reach the point (point B in the figure) where
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Figure 6. Iso-surfaces showing tab wake structures (α = 49◦). (a) Instantaneous vorticity
magnitude |ω| = 3.5 and wake vortex lines. A portion of the hairpin vortex arch is removed
to reveal the vortex lines within. (b) Instantaneous pressure p = −0.16. (i) Upstream necklace
vortex; (ii) position of tab; (iii) curved shear layer; (iv) hairpin vortex heads; (v) hairpin vortex
legs; (vi) vortex lines; (vii) upstream necklace vortex.

the curved shear layer developing from the tab edges becomes unstable and begins to
roll up. Beyond that point, the height of the CVP cores decreases and subsequently
the CVP evolves into the legs of hairpin vortices.

Consistent with the observations by Elavarasan & Meng (2000), current simulations
show that the CVP exists only in the near-tab region; while further downstream the
wake is dominated by a series of hairpin vortices. Elavarasan & Meng observe
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a transition region in the wake where the CVP and the hairpin vortices co-exist.
However, the topological relationship between these two structures was not under-
stood from their experiments. In current simulations, we observe that the CVP evolves
into the legs of hairpin vortices through a deformation and splitting process in the
transition region. This process is illustrated by the instantaneous two-dimensional
streamlines in several cross-stream planes behind the tab (figure 9). Between h and
2h behind the tab, the CVP begins to deform and the dimension of the vortex
increases. Between 1.5h and 2.5h behind the tab, the deformation continues and each
branch of the CVP splits into two co-rotating vortices. By examining the velocity
vector plots and the vorticity iso-contours in various cross-stream planes and various
streamwise-wall normal planes, we have determined that the spawned streamwise
vortices are topologically the legs of subsequent hairpin vortices. Vortex splitting has
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been observed experimentally in rotating fluids (see Beckers & Heijst 1998), which is
due to the growth of the instability on an isolated monopolar vortex. Depending on
the disturbances, the monopolar vortex can split into two (dipole splitting) or three
vortices (tripolar splitting). The splitting of the counter-rotating vortex pair behind
the tab is attributed to the instability associated with the vortex. In the near-tab wake,
each branch of the CVP is analogous to a quasi-monopolar vortex. The instability
created by the difference of vorticity magnitude in the vortex core and the ambient
fluid, together with the disturbances generated by the vortex shedding, causes the
splitting of the CVP in the tab wake.

3.3. Hairpin vortices

Hairpin vortices, shed into the wake quasi-periodically from the tab, are the dominant
structures in the tab wake. They are generated from the three-dimensional curved
shear layer wrapping around the tab edges (figure 6a). This shear layer is stable
within a short distance (1.2h for α = 49◦) behind the tab. Owing to Kelvin–Helmholtz
instability, the shear layer rolls up into a series of vortices, each with a ‘head’ (from
the top edge) and two ‘legs’ (from the two sides). As a shed vortex is convected down-
stream, its legs are stretched owing to the velocity gradient normal to the flat plate.
Eventually, the vortex evolves into a hairpin-like structure. The process of shear
roll-up and vortex shedding is evident from figure 10, which shows contours of the
instantaneous spanwise vorticity ωz in the centreplane. The heads of hairpin vortices
move farther away from the wall as they travel downstream. In figure 11(a) we plot
the contours of the instantaneous streamwise vorticity ωx in the cross-stream plane at
x = 5.3h. In figure 11(b), we plot the streamwise vorticity contours together with the
iso-surface of the vorticity magnitude in three-dimensional space. It is evident that
these patterns demonstrate the cross-section of the hairpin vortex legs. Similar to the
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CVP, hairpin vortex legs also entrain ambient high-speed fluid into the wake and gen-
erate strong upward pumping between the legs, promoting the cross-stream mixing.

The source of vorticity in hairpin vortices is visualized through the tab-wake vortex
lines in figure 12. The portion of the vortex lines outside the wake region resides deep
inside the flat-plate boundary layer. These vortex lines form three arched clusters A, B

and C, which coincide with hairpin vortices demonstrated by the vorticity iso-surface
in figure 6(a). Tracing their origins, we observe that some of the vortex lines in the
arches have quasi-streamwise legs, thus taking the hairpin-like shape. These vortex
lines may extend all the way to the tab, which indicates that the vorticity was initially
lifted from the wall by the tab and were transported downstream. Other vortex lines
in the arches are Ω-shaped and extend to the wall at the local streamwise locations,
which indicates that the vorticity was lifted up locally from the flat-plate boundary
layer.

To explore the relationship between the Ω-shaped vortex and the hairpin vortex,
in figure 13 we re-plot the vortex lines passing through hairpin arch C. Figure 13(a)
illustrates typical Ω-shaped vortex lines that feature an arch and two inward kinks. In
figures 13(b) and 13(c), we plot two horizontal rakes of vortex lines. By rake we refer
to a line segment that the vortex lines cross, that is, the vortex lines pass through the
points on the rake. The two horizontal rakes are placed in the centreplane (above
the centre of the hairpin vortex head C) at y =2h and y = 1.92h, respectively. Since
the centre of the hairpin vortex head is at y = 1.84h (as determined from the contours
in figure 10), the higher rake (figure 13b) traces the region farther away from the
hairpin vortex core, while the lower rake (figure 13c) traces the region closer to the
hairpin vortex core. Clearly, the latter case comprises vortex lines with more stretched
legs. Our explanation is as follows. As the vorticity is newly lifted up by the hairpin
vortex, the vortex line takes the Ω-shape. As the vorticity is transported downstream,
the Ω-shaped vortex lines (and kinks) are stretched to join the hairpin vortex legs
and the vorticity is entrained into the hairpin vortex. As a result, the ‘boundary’
region of a hairpin vortex is associated with newly entrained vorticity (corresponding
to Ω-shaped vortex lines, see figure 13b), while the central part of a hairpin vortex
contains ‘older’ vorticity entrained upstream (corresponding to vortex lines with more
stretched legs, see figure 13c). Figure 13(d) shows the mechanism by which a hairpin
vortex pumps, stretches and entrains vorticity from the boundary layer. The arch of
the Ω-shaped vortex lines is formed by the Q2 pumping (here Q2 refers to motions
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with u′v′ in the second quadrant based on the quadrant-splitting scheme introduced
by Wallace, Eckelmann & Brodkey 1972; Q1–Q4 events in the following sections refer
to motions with u′v′ in corresponding quadrants) inside the hairpin vortex, while the
inward kinks are generated by induction of the hairpin legs.

Hence, we conclude that the hairpin vortex comprises concentrated vorticity (see
the clustered vortex lines) that are pumped up from the wall at various downstream
locations along its passage. Correspondingly, the vortex lines are initially Ω-shaped,
and are gradually stretched into the hairpin-like shape downstream.

The pumping and entrainment of boundary-layer vorticity by hairpin vortices
explain the increase in the vortex strength (circulation) of hairpin heads along the
streamwise direction in the tab wake observed by Yang et al. (2001). They postulated
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that the growth of the hairpin strength was due to the pumping of boundary-layer
vorticity. The current vortex-line visualization supports this mechanism. Owing to
its unique topology, a hairpin vortex near the wall synergistically pumps up (ejects)
low-speed fluid from the boundary layer via induction. It is thus able to lift up and
entrain new vorticity from the local boundary layer, and increase its strength to
counter vorticity diffusion (see the illustration in figure 14). This characteristic could
provide a self-sustaining mechanism for the hairpin structure, which explains why
hairpin structures are long-lived in the tab wake, persisting until at least 20 tab
heights downstream (Yang et al. 2001).

The interactions of hairpin vortices are illustrated in figure 15 with a temporal
sequence of contours of the instantaneous spanwise vorticity ωz in the centreplane,
where the hairpin heads are marked A, B, C and D. We examine the pairing of
two consecutive hairpin vortices marked B and C. Starting from the instant t = 1.65
(figure 15e), the trailing vortex C travels faster than B . Over the next two instants,
vortex C catches up with and rises above B . At t =3.63 (figure 15h) these two vortices
merge into one denoted by BC. The vertical scale of the wake increases significantly
as a result of this pairing process. The pairing of hairpin vortices facilitates both the
growth of the wake and the vertical penetration of the structures into the outer flow
(Gretta & Smith 1993).

3.4. Opposite-signed vortex

Figure 10 also reveals pockets of positive vorticity distributed below the hairpin
vortex heads. The portion of figure 10 surrounding the second pocket is enlarged
and shown in figure 16(a). A vortex with an opposite sense of rotation was identified
below and between the two hairpin vortex heads. To make sure that the vorticity
characteristics did not arise from inadvertent factors, we slid the viewing plane
(streamwise-wall normal plane) along the z-axis and confirmed that this opposite-
signed vortex persisted for a significant distance in the spanwise direction.

To trace the opposite-signed vortex in three-dimensional space, we observe that the
majority of the vortex lines passing through this vortex core belong to a Ω-shaped
bundle associated with a hairpin vortex, as shown in figure 16(b). Clearly, the opposite-
signed vortex is merely the upper branch of the kink in the Ω-shaped vortex discussed
in § 3.3. It results from the vorticity pumping by the hairpin vortex.
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In previous PIV measurements (Meng & Yang 1998; Yang et al. 2001), a type of
vortex called ‘reverse vortex’ (rotating in a sense opposite to the hairpin heads) was
frequently observed below the hairpin heads in the centreplane. In two dimensions,
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these vortices appear very similar to the opposite-signed vortices seen in current
simulations. Yang et al. (2001) interpreted the reverse vortex as a secondary structure
developed from a reverse shear formed by the interaction of the decelerated fluid
below a hairpin head and faster fluid further underneath. This is not inconsistent
with the current observation that the opposite-signed vortex is a Ω-shaped vortex
pumped and deformed (kinked) by the hairpin. However, it should be pointed out
that the experiments covered a much larger streamwise distance of the wake (about
20h) than current simulations (about 5h) and that most of the ‘reverse vortices’ were
observed in downstream distances beyond the simulation domain. Yang et al. (2001)
noticed that for the ‘reverse vortices’ to be observed, the hairpin heads must be far
enough away from the wall.

3.5. Secondary hairpin vortex

Those vortex structures formed directly by the tab such as the hairpin vortices and
the CVP are referred to as primary vortices, whereas new vortices spawned by the
primary vortices are referred to as secondary vortices. In the temporal series shown
in figure 15, hairpin vortices A, B, C and D are rolled up from the shear layer formed
by the tab edge and hence are primary hairpin vortices, while vortex S is born inside
the wake rather than shed from the tab. Hence, vortex S is a secondary structure.
According to Yang et al. (2001), the unstable shear layer that produces S is generated
through the ejection of the preceding hairpin vortex A.

Simulation results demonstrate that the newborn vortex S in figure 15 takes a
hairpin-like shape. In figure 17, we plot contours of the spanwise vorticity ωz in the
centreplane including the secondary vortex S (figure 17a). We also plot contours of
the wall-normal vorticity component ωy in a horizontal plane at y =h (figure 17b). By
sliding the vertical viewing plane along the z-axis and the horizontal viewing plane
along the y-axis in the simulated data, we confirm that these two sets of contours
do denote the same vortices. These vortices are hairpin-shaped. Both views show
a series of primary hairpin vortices and the secondary hairpin vortex S inside the
primary ones. It is revealed from the three-dimensional flow data that the legs of the
secondary hairpin vortex in figure 17(b) merge into the legs of the primary hairpin
vortices at y = 0.76h. The secondary hairpin vortex has the same sense of rotation as
the primary ones.
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Using the concept of vorticity pumping discussed in § 3.3, we suggest that the
vorticity of the secondary hairpin vortex comes from the flat-plate boundary layer.
As the primary hairpin arch is far away enough from the wall, the vorticity of the
Ω-shaped vortex lifted up by the hairpin vortex may cluster to form a secondary
hairpin vortex due to local instability, instead of being entrained into the primary
hairpin vortex. The legs of the secondary hairpin vortex merge into those of the
primary hairpins as a result of the stretching of the Ω-shaped vortex downstream.
This process is consistent with the vortex-induced boundary-layer breakdown concept
proposed by Peridier et al. (1991a, b) and supported by Yang et al. (2001).

Current simulation also confirms the observation by Yang et al. (2001) that
secondary hairpin vortices travel slower than the primary hairpin vortices and merge
with the upstream primary hairpin vortices. Since the secondary hairpin S is below
and inside the primary hairpins, the induced motion by the primary vortices retards
the secondary hairpin vortex. This is as shown by the temporal series in figure 15. At
t = 3.03 (figure 15g), S starts to pair with the primary hairpin D. They merge into a
single hairpin vortex marked as SD in figure 15(h).
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3.6. Secondary streamwise counter-rotating vortex pair

Another type of secondary structure, not observed in prior studies, is the secondary
streamwise counter-rotating vortex pair. The secondary streamwise CVP is found
below the hairpin legs with signs of rotation opposite to those of the primary CVP
and the hairpin legs. The secondary streamwise CVP originates near the flat plate in
the centreplane at a streamwise location about 2h behind the tab top edge. It creates
a relatively isolated region of low-momentum fluid near the centreplane in the vicinity
of the flat plate. The secondary CVP generates a downward motion near the flat plate,
which precludes the low-speed boundary-layer fluid in this region from being trans-
ported to the free stream. This interrupts the momentum exchange channel between
the boundary layer and the free stream. Therefore, the presence of this secondary
streamwise CVP is detrimental to the overall mixing efficiency of the tab mixer.

4. Flow statistics
Statistical analysis of the simulation data is performed to further explore the charac-

teristics of the tab flow. In figure 18, we plot contours of the mean streamwise velocity
U in the centreplane. Upstream of the tab, a zone of back flow shows the imprint
of the necklace vortices. Higher up, the in-flow deflects over the tab and accelerates
along the windward surface, reaching a maximum streamwise velocity about 0.5h

behind the tab tip. Behind the tab, the flow enters the low-pressure wake, generating
a region of recirculating backward flow. This recirculating region becomes more
confined to the flat plate with a smaller inclination angle. The notable characteristic
of the mean flow is a deficit in the mean streamwise velocity profile. The positive
(principal) shear layer above and the negative (reverse) shear layer below the deficit
have been demonstrated by Yang et al. (2001) to coincide with the passage of the
hairpin vortex heads and the opposite-signed vortices, respectively.

The distribution of the Reynolds stress 〈u′v′〉 in the tab wake (figure 19) shows
three distinct layers along the wall-normal direction. The upper layer of negative 〈u′v′〉
values coincides with the principal mean shear layer (∂U/∂y > 0) and the passage
of hairpin heads in the instantaneous vortex dynamics. The negative 〈u′v′〉 values
indicate that the ejection and sweeping effects (Robinson 1991) induced by hairpin
vortex heads are statistically significant. The middle layer of positive 〈u′v′〉 values
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coincides with the reverse shear layer (∂U/∂y < 0) and the region where the legs of
hairpin vortices are active. Also found in this region are opposite-signed vortices.
The lowest layer in the Reynolds stress distribution, immediately next to the wall,
is of negative 〈u′v′〉 again, which coincides with the positive shear layer near the
wall (∂U/∂y > 0). The only vortex structure occupying this region is the secondary
streamwise CVP. The negative values suggest that the secondary streamwise CVP
mostly tilts upward.

The distribution of the kinetic energy, k = 1
2
〈u′2 + v′2 + w′2〉 (where u′, v′ and w′

denote the streamwise, wall-normal and spanwise fluctuation velocities, respectively),
in the centreplane reveals two strips of high fluctuation, each with a local maximum.
The upper strip coincides with the principal mean shear and the passage of hairpin
vortex heads, while the lower strip coincides with the reverse mean shear. Figure 20(a)
shows the kinetic energy contours in a cross-stream plane at x = 5.3h. Higher kinetic
energy is observed in the region occupied by hairpin vortex legs, while in the region
of hairpin heads and arches the kinetic energy is relatively low. This observation is
consistent with the measured result by Gretta & Smith (1993).

In figure 20(b), we plot contours of the turbulence production

Pt = −
3∑

i=1

3∑
j=1

〈u′
iu

′
j 〉∂Ui

∂xj
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(with Ui denoting mean velocity components) in the cross-stream plane at the
same streamwise location. High production is observed in a curved shell region,
corresponding to the passage of the hairpin vortex arches in three-dimensional space.
This indicates that hairpin vortex arches, as opposed to hairpin vortex legs, provide
most of the turbulence production.

5. Mixing
The role of various vortices in the fluid mixing process in the tab wake is considered

from two aspects: (i) mixing between the wake and the ambient fluid, and (ii) mixing
inside the wake. The wake here is roughly defined as the three-dimensional shell
spanned by the hairpin vortices and the CVP. The mixing between the wake and
the ambient fluid is attributed to the hairpin vortices and, in the near-wake, the
CVP. High-speed fluid from outside is entrained into the wake, while near-wall low-
speed fluid inside the wake is pumped up into the outer flow. Such pumping action
is accomplished by both the strong Q2 ejection of hairpin vortex heads and the
common-up pumping of the CVP and the hairpin legs. The pairing and coalescence
of hairpin vortices further enhances the mixing between the wake and the ambient
fluid by dramatically increasing the wake growth.

The hairpin vortices and the CVP are also responsible for the mixing inside the
wake, which is further enhanced by the secondary hairpin vortices. The secondary
streamwise CVP, however, hampers the overall mixing by interrupting the momentum
exchange between the near-wall region and the free-stream flow with its common
down motion, which is opposite to the motion caused by the primary CVP and the
hairpin vortices. Finally, the upstream necklace vortices do not apparently participate
in the mixing process in the wake.

The tab inclination angle has a notable effect on the mixing. In the three cases
simulated, the largest inclination angle produces the highest level of fluctuation. The
pressure drop across the tab also increases as the inclination angle increases. The
simulation suggests that a larger tab inclination angle produces a better mixing, but
at the expense of a larger pressure drop across the tab, hence requiring more power
to drive the flow. Gretta (1990) employed the normalized disturbance height, which
was defined as the maximum height at which the disturbance to the hydrogen bubble
sheet in the experiment by the flow structures could still be felt, as a measure of
mixing efficiency. He observed that in the far field, larger normalized disturbance
heights were associated with smaller tab inclination angles, while in the near field (in
the range covered by current simulations) no significant differences were observed in
the normalized disturbance height for various angles. In present simulations, if we
define a disturbance height as the location with a mean streamwise velocity of 99%
of the free-stream velocity, our results also show similar disturbance heights for the
three angles.

6. Concluding remarks
This is the first DNS study of the flow past a trapezoidal tab, which has both

fundamental and technological relevance. Although the current study is concentrated
on the near-tab wake, all flow structures in the wake are initiated in this region.
The interactions and evolution of these structures not only exhibit tremendous
complexity, but also play a crucial role in the physics of mixing and far-wake
behaviour. The direct numerical simulations have clarified a number of previous
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experimental observations, revealed new topological and dynamical details of vortex
structures, and addressed some open questions regarding the mechanisms and dynamic
processes of the structures. We summarize the important points from this study below:

(i) Two basic structures in the wake, namely the counter-rotating vortex pair and
the hairpin vortices, are topologically related. It is known that hairpin arches are
initiated from the unstable shear layer formed on the edges of the tab. Our study
further reveals that the CVP, originating from the bottom corners of the tab, evolves
into the hairpin vortex legs through a deformation and splitting process.

(ii) The hairpin vortex comprises concentrated vorticity that is lifted up from the
wall region at various streamwise locations. Pumped up by an existing hairpin vortex,
the newly elevated wall vorticity forms an Ω-shaped vortex. The Ω-shaped vortex
is subsequently entrained into the hairpin vortex and stretched into the hairpin-like
shape as it is advected downstream.

(iii) Since hairpin vortex pumps up and entrains new vorticity from the local
boundary layer, it is able to increase its strength to counter vorticity diffusion. This
explains the longevity of hairpin vortex structures observed in previous experiments
(Yang et al. 2001).

(iv) ‘Reverse vortex’ (rotating in a sense opposite to the hairpin heads) found in
previous experiments (Yang et al. 2001) as a separate structure in the far wake region
is not observed in current simulations. However, in the near field of the tab wake,
an opposite-signed vortex is found and identified as a part of the Ω-shaped vortex,
pumped and kinked by the hairpin.

(v) There is a strong correlation between the dynamics of the vortical structures
and the statistical characteristics of the tab wake. Turbulence production is mostly
accomplished by the hairpin vortex arches, while the highest turbulent kinetic energy
is associated with the hairpin vortex legs.

The authors are indebted to Professor Peyman Givi for numerous invaluable
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stage of the project. This work was supported by the National Science Foundation
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